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Abstract-A calculation procedure is described for three-dimensional duct-flow situations which are 
partially-parabolic in nature, i.e. those in which convective influences pass only downstream. diffusive 
influences are directed across the stream. but influences are transmitted from downstream regions to 
upsiream ones by way of pressure. The numerical calculation procedure handles such flows economically; 
it stores the pressure as a three-dimensional array, but other variables two-dimensionally. As an 
illustration. the results from an application of the calculation procedure are compared with those of a 

parabolic calculation procedure. 

NOMENCLATURE 

coefficients in the finite-difference 
equations; 

diffusion flux; 
constant; 
pressure ; 
source or sink term: 
velocity along x-direction; 
velocity along ),-direction; 
velocity along z-direction; 

coordinate directions. 
-. J 

Greek symbols 

PY density; 
T. shear stress; 

4. general variable. 

Subscripts 

D. E. W. A;, S, L-, P, 

i 

refer to grid and interface 
e, W, n. s, p. locations; 
x, _I’, z. coordinate directions: 
ll, c, M’. refer to corresponding velocities. 

1. INTRODUCTION 

1.1. Classificarion of steady-flow siruations 

IT HAS been useful in numerical fluid mechanics to 
divide steady-flow problems into two classes: elliptic 
and parabolic. Strictly speaking all flows except wholly 
supersonic ones are elliptic; this means that pertur- 
bations of conditions at any point of the flow can 
influence conditions at any other point. The mech- 
anisms of these interactions are usually : 

(i) Convection (i.e. downstream transmission along 
stream lines); 

(ii) Conduction, diffusion and viscous action (i.e. 

dissemination in all directions by molecular 
intermixing): 

(iii) Pressure transmission (e.g. the tendency of a fluid 
in a subsonic flow to move out of the way of a 
downstream obstacle before reacting it). 

In “parabolic” flows, mechanisms (ii) and (iii) are 
weak enough to be ignored: and the flow configuration 
is free from “recirculation”, so that mechanism (i) 
transmits effects only in one direction. Many boundary- 
layer, duct-flow and jet phenomena are of this parabolic 
kind; for often the Reynolds number is high enough 
to render the molecular actions insignificant in the 
streamwise direction; and the boundaries of the flow 
domain provoke no sharp curvatures of streamlines. 

In the present paper however, attention is focussed 
upon a class of flow situations which is intermediate 
to the parabolic and elliptic categories. Such flows, 
here called “partially-parabolic”, are characterised by: 

ca) Absence of recirculation, so that mechanism (i) 
(convection) operates only in a single (down- 
stream) direction; 

(b) High Reynolds number, so that mechanism (ii) 
(molecular action) is significant only normal to 
the stream-lines; 

(cl Significant curvature of boundaries, rendering (iii) 
(pressure transmission) the dominant transmitter 
of influences in an upstream direction. 

1.2. Examples of partially-parabolicfows 

Phenomena falling into the partially-parabolic class 
include: 

(a) Flow in strongly-curved ducts, for example pipe 
bends in heat exchangers; 

(b) Flow in turbine and compressor cascades: 
(c) Flows in and near partially permeable resistances 

such as gauzes and screens of tubes or rods. as 
in the shells of some steam generators; 

(d) Flows of lubricants in two-dimensional oil films. 

1.3. Significance for nunterical computation 

Elliptic flows require computer storage of dimen- 
sionality equal to that of the flow; the storage dimen- 
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sionality of a parabolic flow, by contrast, is one less 
than that of the flow. Consequently, since influences 
spread only in the downstream direction in parabolic 
flows, arcking integration can be employed; and there 
is no need to retain in store flow variables for more 
than the immediately-upstream plane or line. For 
elliptic phenomena by contrast, it is necessary to retain 
all upstream values in store; for they may have to be 
altered again in the light of adjustments still to be 
made downstream; an iterative procedure is thus 
always required. 

For partially-parabolic flows, the requirements are 
intermediate: only the pressure requires to have storage 
dimension~ity equal to the flow dimension~ty; the 
other variables (i.e. velocity wmponents, tem~rature, 
con~ntrations, etc.) require only the reduced dimen- 
sionality of parabolic flows. Thus the main advantage 
of a partially-parabolic situation, over the elliptic one, 
comes from the significant reduction in the storage 
requirement. This advantage is greatest for three- 
dimensional flows, as can be seen in the following 
calculations : 

Suppose that 20 grid points are required in every 
direction for adequate coverage of the domain, i.e. 400 
for a two-dimensional problem and 8000 for a three- 
dimensional one. 

Suppose also that we are concerned, as is often the 
case, with three velocity components, pressure, tem- 
perature, two turbulence quantities and concentration, 
i.e. eight variables in all. If the flow is two-dimensional 
and elliptic, we need 8 x 400, i.e. 3200 storage locations; 
however, if it is partially-parabolic the storage ii re- 
duced to 400 (for pressure) + 7 x 20, i.e. to 540 locations, 
a reduction of 2660. 

A three-dimensional elliptic problem with this grid 
fineness requires 64000 storage locations; if however 
the process reduces to partially-parabolic form, the 
storage requirement is only 8ooO-t 7 x 400, i.e. 10800, 
a reduction of 53 200. Such a reduction is of great value. 

This being the case, it is perhaps remarkable that 
the partially-para~lic flow class seems to have escaped 
attention until now. Certainly there is every reason to 
recommend that wherever possible, three-dimensional 
flows should be treated as partially-parabolic instead 
of fully elliptic. 

1.4. Outline of the present contribution 
Calculation procedures for three-dimensional para- 

bolic [2] and elliptic [I J flows have been available for 
some time; and they have been applied to various flow 
configurations. In this report we describe a numerical 
procedure for the calculation of ~rtially-pa~~o~ic Bow 
situations. Like the parabolic calculation procedure 
[Z], the present procedure is of a finite-different type 
and makes use of the SIMPLE* algorithm; but its 
distinctive features are: 

(a) The pressure field alone is stored in a three- 
dimensional array, to be used in common for all the 
three momentum equations. 

*SIMPLE stands for semi-implicit method for pressure- 
linked equations. 

(b) An iterative, marching-inte~ation procedure is 
adopted, whereby several sweeps of the fIow domain 
are made; each sweep uses a better estimate of the 
pressure field, deduced from the observation of errors 
during the previous sweep. All other variables, e,g. 
velocities etc., are stored in twodimensional arrays. 

In Sections 2 and 3 of the report, the differential 
equations and the calculation procedure are explained; 
an illustrative example of partially-parabolic flow situ- 
ation is described in Section 4. along with the appli- 
cation of the present procedure for its calculation. 
From comparisons made between the results using the 
parabolic and parti~ly-parabolic procedures, it is ob- 
served that the p~ti~ly-parabolic calculations display 
the expected flow-pattern and differ si~i~c~tly from 
those obtained by using the parabolic procedure. 

2. DIFFERENTIAL EQL’ATIONS SOLVED 

The equations governing a partially-parabolic flow 
are the familiar Navier-Stokes equations for a steady 
flow but with diffusion in the predominant flow direc- 
tion (z) neglected. In the (x, V, 2) coordinate system, 
they are: 

Mass conservation : 

x-direction momentum: 

y-direction momentum : 

z-direction momentum: 

dp 
= --+ 

t%,, clrzy 

22 ax+ . 
=+S” (2.4) 

Transport of a scalar property, 4: 

In the above equations, u, v and w denote the velocities 
along the x, y and z directions; p represents the fluid 
density, and p the pressure. The “5”s represent the 
shear stresses in the fluid; and J+ stands for the flux 
of the property 4, The terms S,,. S,, S, and SB represent 
additional sources or sinks. 

The differences between the above equations and 
those of elliptic and parabolic flows are the following: 

(i) For an elliptic flow, the governing equations will 
contain also the shear stresses in the z direction; i.e. 
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terms such as ?r,:/?:, dr,,/?z etc. will appear in the 
corresponding equations. 

(ii) For a parabolic flow, on the other hand, not only 
do the equations not contain the diffusion fluxes in the 
z direction but separate pressure fields have to be 
employed for the lateral and longitudinal momentum 
equations. The latter practice in parabolic flows is 
necessary to ensure that the pressure transmission of 
downstream events is negligible. 

3. DETAILS OF THE SOLUTION PROCEDURE 

The above-described differential equations for a 
partially-parabolic flow are solved using a finite- 
difference calculation procedure. The calculation pro- 
cedure is based on the numerical algorithm called 
SIMPLE (for Semi Implicit Method for Pressure- 
Linked Equations) which was developed earlier by 
Patankar and Spalding [2] for parabolic flows. Because 
of the similarity in the equations for parabolic and 
partially-parabolic flows. the present calculation pro- 
cedure shares many features with the parabolic one. 
In this paper importance is given to the differences 
between the two procedures; the common features are 
mentioned only briefly. 

3.1. Finite-djference equations 
The method of derivation of the finite-difference 

equations from the differential equations is identical 
to that in the parabolic calculation procedure [?I. The 
finite-difference equations are derived by integrating 
the differential equations over “control volumes” for 
individual variables transported. The three velocity 
components and pressure are stored in staggered posi- 
tions on the finite-difference grid. The definitions of 
control volumes and storage of variables are shown 
in Fig. 1. 

The difference equations can be stated as follows : 

Continuity : 

C”{(PU)e - (P4pf + C’{(P). - W,) 
+ CW{(P4p -(p&) = 0 (3.1) 

Momenta: 

up= Aku,,+A”su,+A&u,+AUwu, 

+B”+D”@p-pw) (3.2) 

+B’+D”(pp-ps) (3.3) 

wp = A; w. + Al’w, + A;we + A;;; w,v 

+B”+D”(p~-pp). (3.4) 

Property, 4 : 

bp = A~,~~.+A~~~+A~~E+A~~~+B~. (3.5) 

In the above equations. the A coefficients express the 
combined effects of convection and diffusion, l&king 
the property at P with its neighbours in the cross- 
stream plane (Fig. 1); the B coefficients express the 
contribution of upstream convection and of source 
terms, expressed by “S” in the differential equations. 
The ‘T’s represent areas of cell faces across which 

X-Y PLANE 

I I I / 

y-z PLANE 

FIG. 1. Storage locations and control volumes for dependent 
variables. 

mass is convected; and the “D’s are coefficients linking 
pressure differences to corresponding velocities. The 
subscripts P, N, S, E, W and V refer to variables at 
the grid nodes; and the subscripts p, n. s. e and w 
denote the variables at the interface locations shown 
in Fig. 1. * 

3.2. Sequence ofcalculation steps 
The above difference equations are solved by an 

iterative procedure. All variables except the pressure 
are stored in two-dimensional arrays and are evaluated, 
over cross-stream planes, by marching in the pre- 
dominant flow direction. The pressure field is stored 
three-dimensionally, and is first assigned a guessed 
value; it is then updated by sweeping repeatedly 
through the flow domain so as to remove errors in 
continuity and momentum. 

The sequence of calculation steps is the following: 
1. The three-dimensional pressure field is first as- 

signed guessed values. 
2. A march through the flow domain is initiated; 

and, from the inlet distributions of u. r and w their 
distributions at the next downstream location are 
calculated. The pressure gradient terms are evaluated 
from the guessed pressure field: and the coefficients 
A, B etc. are evaluated from variables in store at that 
instant. The equations are solved using a tridiagonal 
matrix algorithm (details are given in [2]). 

3. The newly calculated distributions of u, L’ and w 
are checked for satisfaction of mass continuity at all 
the grid locations in the cross stream plane. The 
pressure and velocity fields are then corrected by 
solving a pressure-correction equation so as to remove 
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errors in mass continuity. The derivation and solution 
of the pressure-~o~ection equation are described in 
the Appendix. 

4. The equation for property # is solved so as to 
provide distributions appropriate to the new down- 
stream axial station. 

5. Another new downstream axial station is chosen 
and the momentum, continuity and $-equations are 
solved as described above. This step-wise march is 
continued until the end of the flow domain is reached. 
By the end of one complete marching sweep, a new 
three-dimensional distribution of pressure has been 
obtained. 

6. Steps 2, 3, 4 and 5 are then repeated until the 
pressure corrections, or the continuity errors which give 
rise to them, have become smalter than a preassigned 
value. On the last sweep, the converged distribution 
of velocities, pressure, shear stresses, temperature etc. 
are printed out, as are needed. 

3.3. The boundary conditions 
The hydrodynamic boundary conditions governing 

the flow situation are prescribed through specified 
distributions of either velocities or pressure. When all 
the boundaries are of specified celuciry. it is necessary, 
for incompressible flows, to fix one pressure point as a 
datum to the rest of the pressure fietd. In co~~~ess~b~e 
pa~ially-parabolic flows however, this is not necessary 
as the density level w-ill decide the pressure level. The 
thermal boundary conditions are prescribed either as 
prescribed temperature or as prescribed heat flux at 
the boundaries. 

4. AN APPLICATION OF THE CALCULATION 
PROCEDURE 

This section describes an application of the calcu- 
lation procedure. The physical situation considered is 
shown in Fig. 2: fluid flows through a square duct in 
which a wire screen is situated midway between inlet 
and outlet; the screen occupies onfy a port;on of the 
cross-sectional area, and. in that region, creates a sink 
of axial momentum expressed by the relation 

kL___-l 
FIG. 2. Geometry considered. 

&= -Kw 

where K is a constant. 
Because of the wire screen. the pressure in the centre 

of the duct rises to compensate for the additional 
pressure drop. This increase in pressure also retards 
the axial flow, thus diverting the streamlines away 
from the screen. The flow region further upstream of 
the screen also experiences the pressure rise and the 
bending of the streamlines, but to an extent diminishing 
with distance from the screen. Thus the Row is in- 
fluenced by events downstream through the pressure 
field. The flow is partially-parabolic. 

Calculations have been made for the above physical 
situation using the partially-paraboIi& calculation pro- 
cedure. For ease of inte~retation of the results, the 
duct walls have been considered to be frictionless, and 
the flow to be laminar. The finite-difference grid, for 
the typical calculations presented here, possessed 10 
nodes in the s and y directions. and 40 grid nodes in 
the :-direction: the procedure. under the above con- 
ditions, converged in 18 sweeps of the flow domain. 

i 

FIG. 3. Development of axial velocity at point 1; w, is the 
velocity at point 1 and w., is the bufk-average velocity. 

Figure 3 displays the predicted development of the 
centre-line axial velocity; and Fig. 4 displays the 
pressure variation at three cross-stream locations. Also 
shown are the results from a parabolic calculation, 
using the procedure of [2]. It is seen that the partially- 
parabolic calculations display the expected behaviour 
of the flow. The parabolic calculations show a jump 
in the pressure and velocity only when the screen is 
reached; further, as a result of the incorrect upstream 
flow field, the flow downstream of the screen is in 
error. It is therefore necessary to employ a partially- 
parabolic calculation scheme to predict the above Row 
situation. 

5. CONCLUDING REMARKS 

In the present paper, we have described a calculation 
procedure for partially-parabolic flow situations. Its 
benefits have been demonstrated by its application to a 
typical partially-parabolic flow problem. 
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FIG. 4. Development of cross-stream pressure variation; 
points 1 and 3 are shown in Fig. 2; w., is the bulk-average 
velocity. Note the difference in the vertical scales of the 

above two figures. 

There are many practically occurring flow situations 
which need the present calculation procedure for their 
solution: a few of them are: 

(a) 

(b) 

(Cl 

@I 
(4 

Flow and heat transfer in a pipe bend, or in a 
tightly-wound spiral pipe. 

Flow of warm water from a power station. dis- 
charged into a river bend. 
Film cooling by discharge of coolant air from a 
row of inclined holes in the surface of a turbine 
blade. 
Flow in turbomachinery blade passages. 
The mixing of dilution air with combustion prod- 
ucts in the downstream portion of a gas-turbine 
combustor. 

Work on these is currently being conducted by the 
authors and their colleagues. 
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APPENDIX 
Al. The Pressure-Correction Equation 

Al.l. Derioarion 
The purpose of the pressure-correction equation is to 

correct the pressure and velocity fields so that mass con- 
tinuity is satisfied at all grid locations in the flow domain. 
The pressure-correction equation is derived from the con- 
tinuity equation and simplified forms of the momentum 
equations. This appendix describes the derivation and solu- 
tion procedure for the pressure-correction equation. 

1. First. the velocity and pressure fields are expressed as: 

p = p*+p,. 

u = u*+u’ and w = M.* + W’ (Al.]) 
1’= 1’*+I., 

where the primed quantities represent corrections to the 
best-estimate (asterisked) values. 

2. The corrections to velocities are then related to the 
pressure corrections. by differentiation of the fimte-difference 
momentum equations: only the central velocity of the con- 
trol volume is allowed to vary during this differentiation. 
Thus: 

u; = D”(pi-p;.) 

where D’ is the coefficient in equation (3.2). 

(A1.2) 

3. The expressions for velocity corrections, along with 
(Al.l). are substituted into the finite-difference form of the 
continuity equation; and the coefficients of pressure correc- 
tions are rearranged. The equation so derived is of the 
following form 

A%pi = A~p;r,+A8p;fA%pk,+ASp; 

+Agpb+AFp;.+mp. (A1.3) 

The A coefficients involve areas and the D’. D’ and D” 
coefficients. Af: is given by 

‘A$ = Af+AC+Afi+Af+AP+A$. 

(A1.4) 

A1.2. Solution qfthe pressure-correction equation 
Unlike the momentum equations. the pressure-correction 

equation has two additional terms Asp6 and A[.pi. which 
link downstream and upstream pressure corrections to p;. 
Because of these links the equation is three-dimensional; 
i.e. a change of p’ at D effects a change at L’. and further 
upstream; so pressure-corrections need to be stored three- 
dimensionally. However. to avoid the three-dimensional 
storage of pressure-corrections, the pressure-correction 
equations are solved. in tbe present procedure. on cross- 
stream planes by repeated application of the tri-diagonal 
matrix algorithm. During the solution pb and pi are taken 
as equal to zero. By doing so. the pressures are updated as 
the marching sweep is contained. 

In addition to the corrections dictated by the pressure- 
correction equation, the pressure field is further corrected 
in the following two ways. These two corrections have been 
observed to procure faster convergence of the numerical 
scheme. 

1. A block adjustment (i.e. a uniform pressure increment 
over the plane) is applied at a plane downstream of that of 
P, to satisfy the overall mass-flow balance. 

2. Certain fractions of the calculated pressure-corrections 
at any cross stream plane are applied also to pressures at 
upstream locations. The amounts of pressure-corrections 
depend upon the grid sizes, the nearness of the upstream 
location and the coefficients. It has been found that when 
this correction is made, the downstream events are trans- 
ferred upstreamat afaster rate. The details of the expressions 
used are given in [3]. 
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ECOULEMENT TRIDIMENSIONNELS EN CONDUITE AVEC TRANSFERT THERMIQUE 

RCumb-On dtcrit une procCdure numir~que de calcul applicable li des configurations trldimenslonnelles 

d’tcoulements en conduite de nature semi-parabolique, c’est a dire a des tcoulements dans lesquels I’eEet 

de la convection est dirigt longitudinalement vers I’aval. celui de la diffusion transversalement ,i I’Ccoule- 
ment, tandis que l’influence des r&ions en aval sur les rigions en amont est transmise par le champ de 
pression. La proddure numtrique permet de traiter 6conomiquement de tels icoulements; la pression 
est mise en m&moire dans un tableau B trois dimensions tandis que les autres variables sont placPes 

dans des tableaux B deux dimensions. .4 titre d’illustratlon. les r&ultats numeriques obtenus dans une 
application de la procbdure de calcul sont comparts h ceux obtenus ;I I’aide d’une procidure parabolique. 

STROMUNGSVERHALTEN UND WARMEUBERGANG IN 
DREIDIMENSIONALEN KANALSTROMUNGEN 

Zusammenfassung-Es wird ein Berechnungsverfahren fiir dreidimensionale Kanalstramungen beschrie- 
ben. Es handelt sich hierbei urn Verhiiltnisse teilweise parabolischer Natur, wobei konvektive Einfliisse 
sich nur stromabwtirts auswirken, die Diffusion quer zur Strtimung wirkt und lediglich iiber den Druck 
such eine Beeinflussung entgegen der Stramungsrichtung auftreten kann. Die numerische Berechnungs- 
methode erweist sich als sehr geeignet fiir solche Striimungen: der Druck wird in dreidimensionaler Form 
eingegeben, wtihrend die anderen Variablen zweidimensional betrachtet werden. Zur Erlluterung werden 
fiir einen Anwendungsfall die Ergebnisse nach dieser Methode mit denen nach der parabolischen 

Berechnungsmethode verglichen. 

TEYEHME ‘/KM2KOCTM M TEllJIOOSMEH B TPEXMEPHOM KAHAJ-IE 

AnnoTauHR - Pacc\laTpHoaeTcn >le-ro;L pacseTa TpexMepHblx TeseHHic c npo+wneh4 CK~~OCTW. 

6.1~3~1\1 h’ napa6o.ii4qecxost>. Korea KoHserTwibiA nepeHoc Hh4eeT \4ecTo To;IbKo Bwi3 no ~OTOKY, 

a L11@$)3iIOHHblil - IlOllepeK IlOTOKa. nepeHOC ki3 06.laCTki BHH3 IlO IlOTOKy B 06JIaCTb BBepX ITO 

nOTOK> OC)UleCTB.lReTCR 3a C’iCT ilaB.leHHR. ~HCJleHHblR paC’teT TaKHX Te’leHHti ilOBOflbH0 IlpOCT. 

B 3TO\, c.l)rae JaB.leHkie RE.lRCTCR TpexuepHoit Be.lti~clHOti. a OCTaJlbHble nepeMeHHble - ,IByMep- 

“b,\,,,. J.lfl ILl.,K?CTpaUHk4 npOEe;leHO CpaBHeHHe llO~ly’leHHblX pe3yJlbTaTOB C pe3yJlbTaTaM&i PaC’ieTa 

napa60.iwrecKoro cnyran. 


